Computational Medical Image Analysis : With a Focus on Real-Time fMRI and Non-Parametric Statistics
نویسنده
چکیده
Functional magnetic resonance imaging (fMRI) is a prime example of multidisciplinary research. Without the beautiful physics of MRI, there would not be any images to look at in the first place. To obtain images of good quality, it is necessary to fully understand the concepts of the frequency domain. The analysis of fMRI data requires understanding of signal processing, statistics and knowledge about the anatomy and function of the human brain. The resulting brain activity maps are used by physicians, neurologists, psychologists and behaviourists, in order to plan surgery and to increase their understanding of how the brain works. This thesis presents methods for real-time fMRI and non-parametric fMRI analysis. Real-time fMRI places high demands on the signal processing, as all the calculations have to be made in real-time in complex situations. Real-time fMRI can, for example, be used for interactive brain mapping. Another possibility is to change the stimulus that is given to the subject, in real-time, such that the brain and the computer can work together to solve a given task, yielding a brain computer interface (BCI). Non-parametric fMRI analysis, for example, concerns the problem of calculating significance thresholds and p-values for test statistics without a parametric null distribution. Two BCIs are presented in this thesis. In the first BCI, the subject was able to balance a virtual inverted pendulum by thinking of activating the left or right hand or resting. In the second BCI, the subject in the MR scanner was able to communicate with a person outside the MR scanner, through a virtual keyboard. A graphics processing unit (GPU) implementation of a random permutation test for single subject fMRI analysis is also presented. The random permutation test is used to calculate significance thresholds and p-values for fMRI analysis by canonical correlation analysis (CCA), and to investigate the correctness of standard parametric approaches. The random permutation test was verified by using 10 000 noise datasets and 1484 resting state fMRI datasets. The random permutation test is also used for a non-local CCA approach to fMRI analysis. Populärvetenskaplig sammanfattning Funktionell magnetresonansavbildning (fMRI) är en icke-invasiv metod för att mäta hjärnaktivitet. Metoden baseras på att blodets magnetiska egenskaper, via syresättningen, förändras när hjärnan är aktiv. fMRI används dels för att öka förståelsen om hjärnan, dels som ett kliniskt verktyg inför borttagning av hjärntumörer. Denna avhandling presenterar metoder för att analysera hjärnaktivitet när försökspersonen ligger i magnetkameran, s.k. realtids-fMRI, till skillnad mot att genomföra analysen efteråt. Realtids-fMRI kan, bland annat, användas som ett hjälpmedel för att lära sig att kontrollera sin egen hjärnaktivitet, för att till exempel undertrycka smärta. Ett annat framtida användningsområde är att skapa gränssnitt mellan hjärnan och en dator, för att till exempel kunna kontrollera en robotarm med tankekraft. Avhandlingen presenterar även metoder för icke-parametrisk fMRI-analys. Ett problem med vanlig, parametrisk, fMRI-analys är att man måste göra en rad antaganden om sina data. Om dessa antaganden är fel kan man inte lita på resultatet av analysen. Icke-parametrisk fMRI-analys bygger på färre antaganden, men kräver dock att mer beräkningar utförs. För att göra icke-parametrisk fMRI-analys praktiskt möjligt, används beräkningskraften hos moderna grafikkort.
منابع مشابه
Optimized co-registration method of Spinal cord MR Neuroimaging data analysis and application for generating multi-parameter maps
Introduction: The purpose of multimodal and co-registration In MR Neuroimaging is to fuse two or more sets images (T1, T2, fMRI, DTI, pMRI, …) for combining the different information into a composite correlated data set in order to visualization, re-alignment and generating transform to functional Matrix. Multimodal registration and motion correction in spinal cord MR Neuroimag...
متن کاملEffect of Phase-Encoding Reduction on Geometric Distortion and BOLD Signal Changes in fMRI
Introduction Echo-planar imaging (EPI) is a group of fast data acquisition methods commonly used in fMRI studies. It acquires multiple image lines in k-space after a single excitation, which leads to a very short scan time. A well-known problem with EPI is that it is more sensitive to distortions due to the used encoding scheme. Source of distortion is inhomogeneity in the static B0 field that ...
متن کاملEffect of Physiological noise on Thoraco-Lumbar spinal cord fMRI in 3T Magnetic field
Introduction: Functional MRI methods have been used to study sensorimotor processing in the brain and the Spinal cord. However, these techniques confront unwanted contributions to the measured signal from physiological fluctuations. For the spinal cord imaging, most of the challenges are consequences of cardiac and respiratory movement artifacts that are considered as signifi...
متن کاملfMRI analysis on the GPU - Possibilities and challenges
Functional magnetic resonance imaging (fMRI) makes it possible to non-invasively measure brain activity with high spatial resolution. There are however a number of issues that have to be addressed. One is the large amount of spatio-temporal data that needs to be processed. In addition to the statistical analysis itself, several preprocessing steps, such as slice timing correction and motion com...
متن کاملImproving the Performance of ICA Algorithm for fMRI Simulated Data Analysis Using Temporal and Spatial Filters in the Preprocessing Phase
Introduction: The accuracy of analyzing Functional MRI (fMRI) data is usually decreases in the presence of noise and artifact sources. A common solution in for analyzing fMRI data having high noise is to use suitable preprocessing methods with the aim of data denoising. Some effects of preprocessing methods on the parametric methods such as general linear model (GLM) have previously been evalua...
متن کامل